skip to main content


Search for: All records

Creators/Authors contains: "Moore, Matthew D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The continuing cases of COVID-19 due to emerging strains of the SARS-CoV-2 virus underscore the urgent need to develop effective antiviral technologies. A crucial aspect of reducing transmission of the virus is through environmental disinfection. To this end, a nanotechnology-based antimicrobial platform utilizing engineered water nanostructures (EWNS) was utilized to challenge the human coronavirus 229E (HCoV-229E), a surrogate of SARS-CoV-2, on surfaces. The EWNS were synthesized using electrospray and ionization of aqueous solutions of antimicrobials, had a size in the nanoscale, and contained both antimicrobial agents and reactive oxygen species (ROS). Various EWNS were synthesized using single active ingredients (AI) as well as their combinations. The results of EWNS treatment indicate that EWNS produced with a cocktail of hydrogen peroxide, citric acid, lysozyme, nisin, and triethylene glycol was able to inactivate 3.8 logs of HCoV-229E, in 30 s of treatment. The delivered dose of antimicrobials to the surface was measured to be in pico to nanograms. These results indicate the efficacy of EWNS technology as a nano-carrier for delivering a minuscule dose while inactivating HCoV-229E, making this an attractive technology against SARS-CoV-2. 
    more » « less
  2. Abstract

    A new expanded porphycene with 26 π‐electrons has been prepared by the McMurry coupling of 1,4‐bis(3,4‐diethyl‐2‐pyrryl)benzene dialdehyde. Expansion of the porphycene framework provides a ligand capable of stabilizing a bis(rhodium) and a monoruthenium complex. These new porphycene derivatives absorb strongly in the NIR spectral region, with appreciable absorptivity up to 1300 nm. On the basis of their ground‐ and excited‐state spectroscopic features and structural parameters, both the free‐base system and the bis(rhodium) complex are considered to be Hückel‐type aromatic systems. This conclusion is supported by DFT calculations.

     
    more » « less
  3. Abstract

    A new expanded porphycene with 26 π‐electrons has been prepared by the McMurry coupling of 1,4‐bis(3,4‐diethyl‐2‐pyrryl)benzene dialdehyde. Expansion of the porphycene framework provides a ligand capable of stabilizing a bis(rhodium) and a monoruthenium complex. These new porphycene derivatives absorb strongly in the NIR spectral region, with appreciable absorptivity up to 1300 nm. On the basis of their ground‐ and excited‐state spectroscopic features and structural parameters, both the free‐base system and the bis(rhodium) complex are considered to be Hückel‐type aromatic systems. This conclusion is supported by DFT calculations.

     
    more » « less